查看原文
其他

1973~2023 年中国各省市区县逐日、逐月、逐年累计降水量面板数据 & 栅格数据

RStata RStata 2023-10-24

前不久给大家分享了使用 R 语言爬取 GSOD 气象站点数据的方法:使用 R 语言爬取 1929~2023 年 GSOD 气象站点数据,最近我仿照之前处理气象数据的方法处理了降水量数据,也就是首先把气象站点的数据插值成 0.1˚x0.1˚ 分辨率的网格数据,然后把网格数据转换成栅格数据再分区域平均得到各省市区县的年度、月度和日度数据,具体处理细节如下:

  1. 因为之前的数据是使用 2020 年行政区划进行插值处理得到,为了方便对比,这次依然使用了 2020 年的行政区划
  2. 使用的网格是 0.1˚x0.1˚ 分辨率的网格,也就是每个格点长宽都是 0.1˚(纬度/经度),更加精细;
  3. 先把插值得到的网格数据构建成栅格数据数据,然后再分区域汇总;
  4. 从栅格数据分区域汇总平均即可得到省市区县的面板数据;
  5. 为了避免过度平滑的问题,进行插值的时候仅仅使用每个格点附近的 5 个站点数据;
  6. 考虑到过早年份数据中的气象站点过少,仅仅处理了 1973 年至今的数据。

以 2023 年 4 月 18 日日照时数的处理为例,首先是该天所有气象站点的日照时数数据:

使用 IDW 法插值成 0.1˚x0.1˚ 分辨率的网格数据:

把插值得到的网格数据转换成栅格数据(这里展示的是 2022 年年度平均的):

栅格数据分区域汇总就可以得到省市区县的数据了,例如区县的:

按照上面的处理思路循环处理 1973年1月1日~2023年4月18日的数据即可各省市区县分年、分月、逐日的累计降水量数据了,为了方便大家的使用,我把数据保存成了 xslx 格式的:

每份数据都包含各级行政区划代码,方便大家和其他数据集进行匹配,作为参考,下图展示了 2021 年 8 月 1 日各城市平均降水量数据:

2022 年 6 月各省份累计降水量:

由于这次处理过程中生成了栅格数据,所以附件中也有每天的栅格数据。

最后的这个图展示了 1973~2022 年中国各省市年累计降水量的变化(2023 年的数据不足全年):

从图上可以看到,符合南方雨水多,北方雨水少的特点。

下图展示了这次处理的结果与之前版本的结果对比:

之前版本的数据在这里(2020 年之前的数据更建议用这个):

https://rstata.duanshu.com/#/brief/course/df22178683e041dc839f6987671c382b

注意事项

  1. 由于降水量可能受到地形、植被、水文、人类活动等因素的影响,因此使用上文所说的方法计算得到的各区域均值可能与实际值有所偏差。

  2. GSOD 数据中的 1999 年数据有问题,所以这里我是用之前版本的数据替换了 1999 年的数据。

处理方法

感兴趣的小伙伴可以参考这个课程学习:

气象数据是如何处理的?以降水量为例:https://rstata.duanshu.com/#/course/1e0611cbef2d46afb534240f136380a3

获取数据

是不是感觉很硬核!欢迎报名 RStata 培训班获取全部课程和以会员价获取数据资料(10元/份)详情可阅读这篇推文:数据处理、图表绘制、效率分析与计量经济学如何学习~

详情可点击阅读原文进入 RStata 学院了解(从首页的会员卡专区即可查看和购买会员卡)。

更多关于 RStata 培训班的信息可添加微信号 r_stata 咨询:

附件下载(点击文末的阅读原文即可跳转):https://rstata.duanshu.com/#/brief/course/6b5399202bbe4d33846e40f6ca1b61b2


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存